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Abstract. Nonconvex and nonsmooth optimization problems arise in advanced engineering anal- 
ysis and structural analysis applications. In fact the set of inequality and complementarity rela- 
tions that describe the structural analysis problem are generated as optimality conditions by the 
quasidifferential potential energy optimization problem. Thus new kind of variational expressions 
arise for these problems, which generalize the classical variational equations of smooth mechanics, 
the variational inequalities of convex, nonsmooth mechanics and give a solid, eomputationally effi- 
cient explication of hemivariational inequalities of noneonvex, nonsmooth mechanics. Moreover 
quasidifferential calculus and optimization software make this approach applicable for a large 
number of problems. The connection of quasidifferential optimization and nonsmooth, noncon- 
vex mechanics is discussed in this paper. A number of representative examples from elastostatic 
analysis applications are treated in details. Numerical examples illustrate the theory. 
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1 I n t r o d u c t i o n  

Advanced structural analysis and engineering mechanics applications require the 
study of structures with boundary or interface conditions and with material laws 
and constitutive equations which involve complete ascending and descending ver- 
tical branches with monotone and generally nonmonotone graphs. Adhesive con- 
tact mechanics, softening and locking effects in concrete and geomaterials, ten- 
sion cracking effects in masonry structures and delamination effects in composites 
belong to this category of problems, to name but a few of the areas where dehcate 
nonsmooth structural analysis methods are used [10], [14], [17]. A general scheme 
used in structural analysis and computational mechanics, which also covers the 
majori ty of applications, consists in first defining a potential energy function and 
then producing the governing relations (equations and inequalities) of the initial 
problem by writting down the optimality (or critical point) conditions for this 
potential function, possibly taking into account subsidiary equality or inequality 
constraints. This general scheme will be adopted in the present paper which exam- 
ines new extensions of structural analysis methods based on quasidifferential and 
codifferential optimization. 

Lack of convexity and differentiability properties are the main obstackles which 
must be treated in an appropriate way, if potential energy optimization methods 
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are to be used in the aforementioned advanced applications. Accordingly appro- 
priate definition of the "generalized gradient" operator must be used in order 
to derive the optimality conditions and extend the applicability of gradient-like, 
steepest descent numericM optimization algorithms. The multiplicity of the solu- 
tion, which recalls for the use of "global optimization" [11] methods must also be 
addressed, since multiple solutions do arise in these applications and a possibility 
of finding more than one of them (optimally all of them or the "best" one with 
respect to a given critetion) is of interest. 

The concept of the quasidifferential and its computationally more appealing 
concept of the codifferential tackle both problems in an appropriate way [5], [4], 
[6], [3], [2]. A function is called quasidifferentiable if its directional derivative can be 
constructed as a sum of two terms which are in turn the maximum and minimum 
of linear functions of the direction multiplied by elements of two convex, compact 
subsets of lit '~. This ordered pair of sets, the subdifferential and the superdiffer- 
ential in the sense of Demyanov and l~ubinov, constitute the quasidifferential of 
the function at the sought point. The set-valued nature of this generalization of 
the gradient operator treats the complete vertical branches of the mechanical laws 
and boundary conditions in our application, analogously to the classical subdiffer- 
ential operator of convex analysis [12], [10], [14]. In fact the two notions coincide 
for convex, nondifferentiable applications. Moreover convexity and concavity is 
treated separately by the two sets that  comprise the quasidifferential. This is a 
generalization of the difference convex approximation [20], [11] where the function 
is written as a difference of two convex functions, the second constituent of the 
ordered set being actually the concave counterpart. The case of difference convex 
decomposition is covered, as a special case by the quasidifferential [4], [20]. In an 
analogous way sets defined by equations and inequalities involving quasidifferen- 
tiable functions are called quasidifferentiable sets. A systematic definition of the 
normal and the tangential cones of these sets (the strict, nonconvex ones, not some 
convex approximation of them) is among the interesting aspects of this approach 
with significant applications in structural analysis (e.g. in plasticity theory with 
nonconvex yield functions [15], [16]). 

The codifferentiability concept extends the notion of quasidifferentiability in 
a way advantageous for numerical applications [2], since the arising operators are 
Hausdorff continuous (cf. the various e-subdifferential generalizations of the convex 
subdifferential operator, see e.g. [4]). 

For convex, nondifferentiable problems the adoption of the convex subdifferen- 
tial gave rise to the formulation and study of variational inequality problems in 
mechanics [10], [14]. For nonconvex, nondifferentiable problems the explication of 
the arising optimality conditions gives rise to systems of variational inequalities 
[24], [16] which can be solved either by quasidifferential and codifferential optimiza- 
tion algorithms, as it will be described in this paper, or in some specific cased by 
appropriate multilevel decomposition techniques that  resemple the sub- and super- 
gradient optimization of mathematical programming [26], [16], [24], [17]. Note here 
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that  the hemivariational inequality approach (after P.D. Panagiotopoulos [14], [15], 
[17]) which is based on the generalized subgradient operator in the sense of F.H. 
Clarke, is connected to the systems of variational inequalities approach advocated 
in this paper. In fact Clarke's generalized gradient is derived by the quasidiffer- 
ential calculus in a systematic way [22], [S], while the latter concept permit us 
effectively differentiate local minima and local maxima from critical points. 

It should also be mentioned here that  a complete quasidifferential calculus 
exists, which covers the most frequently arising cases of maximum and minimum 
type functions and of composite functions [6], [22]. 

The aim of this paper is to review the parallel developments in nonsmooth 
mechanics and quasidifferentiable and codifferentiable optimization, to give model 
formulations of variational inequality problems and systems of variational inequali- 
ty problems in mechanics and to demonstrate by numerical examples its impact on 
computational mechanics and nonsmooth modelling in mechanics and engineering 
(see also [9]). 

2 Q u a s i d i f f e r e n t i a b l e  a n d  c o d i f f e r e n t i a b l e  o p t i m i z a t i o n .  O p t i m a l i t y  
c o n d i t i o n s  

A function f defined on an open set X E ]~'~ is called quasidifferentiable at x E X 
if it is directionally differentiable at x and its directional derivative f '(x,  g) along 
the direction g E ~ n  can be written as: 

f ' ( x ,g )= max < h i , g >  + rain <h2,g> (1) 
hi E U h2 C V 

Here U and V are convex compact sets in ~'~. The ordered pair Df(z)  = [U, V] 
is called the quasidifferential of f at z, U is called the subdifferential of f at z 
and is denoted by Of(z) and V is the superdifferential of f at z, denoted by Of(z) .  

EXAMPLE 2.1. For a differentiable function f either D f  = [V f,  {0}] or D f  = 
[{0}, V f]  can be used as the quasidifferential of f .  

EXAMPLE 2.2. For a convex, nondifferentiable function f ,  D f  = [Of, {0}], where 
Of denotes the classical subdifferential of convex analysis [21]. 

EXAMPLE 2.3. For a concave function f ,  D f  = [{0},0f] ,  where Of denotes 
the superdifferential of the concave function f .  

EXAMPLE 2.4. For a difference convex (d.c.) function, i.e. a function f written as 
f ( x )  = f l ( z )  - f2(x) ,Vz E X with f l ( z )  and re(z)  appropriate convex functions, 
one may take Df(x)  = [0f l (z) ,  0f2(z)],  where the convex subdifferentials of the 
constituent functions f l ( z )  and f2(x) are used. 
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For the calculation of the quasidifferential of given structured functions, (i.e. 
functions that  are composed from simple components by taking the classical rules 
of addition, subtraction, multiplication and division, and beyond them certain 
finite combinations of maximum and minimum operators), and of composite func- 
tions calculus rules exist (see [6], [3], [71, [8], p.121)o 

We should mention here that  the quasidifferential is not uniquelly defined, since 
addition of a given compact convex set to each element of the ordered pair [Of, Of], 
does not change the result in (1). Thus it should be considered as class of equivalent 
pairs of convex compact sets. 

A set A C }t '~ defined by a finite number of equalities and inequalities involving 
quasidifferential functions is called quasidifferential [4]. For these kind of general- 
ly nonconvex sets with nonsmooth boundaries, normal and tangential vectors are 
exactly defined by the quasidifferentiability concept. Thus a potential for appli- 
cations in mechanical theories exists (e.g. in plasticity and damage theories with 
nonconvex and nondifferentiable yield sets, see also [16], [15]). In this article we 
will restrict ourselfes to unconstrained problems due to lack of space. 

Since the concept of the quasidifferential gives rise to polyhedral approximations 
of general nonconvex and nonsmooth, but directionally differentiable functions, 
necessary and in some cases sufficient conditions for a point x E X to be an 
extremum poit for f can be written [19], [4], [8], Chapt. V. First-order conditions 
for unconstrained minima will be reviewed here. For more complicated cases the 
reader is referred to the above given literature. The basic local necessary (resp. 
sufficient) conditions for a directionally differentiable function f to admitt  a local 
minimum (resp. a strict local minimum) at point x* E ~'~ read: 

> (resp. >) 0, VZX e a "  (2) 

For a subdifferentiable function f ,  relation (2) is equivalent to the satisfaction of 
the convex set-valued inclusion: 

0 E Of(x*) (resp. 0 E int0f(x*) if x* is a nondifferentiable point) (3) 

For f quasidifferentiable relation (2) is equivalent to relation 

- 0 / ( x * )  c _0 f (x*)  (4) 

If f is in addition locally Lipschitz continuous and the following relation holds: 

- 0 f(x*) C into _f(x*) (5) 

then point x* E ~ "  is a strict local minimum of f at X.  For extensions of the 
above given optimality conditions to constrained optimization problems the reader 
is referred to [4], [8]. 

It should be noted here that  in the course of checking optimahty conditions 
(4), (5) (for instance in a numerical algorithm) the question of finding an optimal 
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representative element among the equivalent class of quasidifferentials arise. For 
most applications this choise does not pose serious problems in practical numerical 
implementations. For a discussion of current research and open questions related 
to this subject we refer the reader to [8], [13]. 

The notion of the quasidifferential gives rise to the following local polyhedral 
approximation of f (x)  around point x* (quasilinearization): 

f(x* + A)  = f (x*)  + max < v, A > + rain < w, A > + o ~ ( A )  (6) 

with O~(~)  --+ 0, as a I 0, VA E R'~. 
Ot 

Unfortunately the approximation (6) is not a continuous function of x* (cf. 
the convex subdifferential operator which has the same deficiency). This problem, 
which is essential for the efficiency of numerical algorithms, led to the definition 
of the codifferential [2], [8], an operator which is a continuous function of both 
x and A. A function f is called codifferentiable at x, if it admits a first order 
approximation of the form (see e.g. [8], p.189): 

f ( x + A )  : f ( x )+ max [a+ < h l , A  >]+ min [fl+ < h2,A >] 
[or, hi] C df(x)  [fl, h2] E -dr(x) 

(7) 
The ordered pair of convex compact sets of R,~+I, 7)f(x) = [df(x), d f (x ) ] ,  is called 
the codifferential of f at point x. d f (z )  is called the hypodifferential and dr (x)  is 
called the hyperdifferential of f at x. Clearly a, fl E R1 and hi,  h2 E ~ ' L  Note 
here that  the set of quasidifferentiable and codifferentiable functions coincide (in 
fact by setting a = fl = 0 in (7) we get the expression (6) of the quasidifferential), 
and that  calculus rules and optimality conditions are written analogously to the 
ones written for the quasidifferentials (see e.g. [8]~ Chapter IV and the section of 
the numerical algorithms of this paper). 

EXAMPLE 2.5. (see [8], p.193) The advantages of using the notion of the codif- 
ferential instead of the quasidifferential and the similarities with other approaches 
concerning the convex subdifferential are demonstrated here by means of the con- 
vex nondifferentiable function f(x) = - - x -  The directional derivative o f / ( x )  and 
the convex analysis subdifferential of f ,  which coincides with the subdifferential in 
the quasidifferential sense) read 

g, ifx >0 I i, ifx>O 
f ' ( z , g ) =  - g ,  i f x < 0  , Of(x)=O_f(x)= -1 ,  i f x < 0  

Ilgll, if ~ _- o [ - x ,  1], if �9 = o 
(8) 
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Here g 6 ~1 and the superdifferential is Of(~) = {0}. The hypodifferential of f 
reads: 

c o { ( 0 , 1 ) , ( - 2 z , - 1 ) } ,  if a > 0 
g f (~ )  = co{(2~, 1), ( 0 , - 1 )} ,  if a < 0 (9) 

while the hyperdifferential is d f (x )  = {(0, 0)}. One may observe that  the map- 
ping :Df(z) = [df(x),df(x)] is Hausdorff continuous in x and that  it contains 
in some sense "global" information which would allow to a numerical scheme to 
detect and treat  the nondifferentiability of the function appropriately, even from 
points different from the point z = 0 where the function is nondifferentiable (a 
case which appears with probability one in a numerical scheme). 

3 Q u a s i d i f f e r e n t i a b l e  e n e r g y  o p t i m i z a t i o n  in m e c h a n i c s  

A large number of nonlinear problems in mechanics can be derived by differenti- 
ation from appropriate potential energy functions (called from this fact potential 
problems). The classical system of nonlinear equations (e.g. compatibility, equilib- 
rium, material laws in elasticity) and the boundary conditions result as optimality 
(or in general critical point) conditions from this potential. The classical gradi- 
ent operator permit one consistently linearize these expressions and write them 
as a linear variational inequality. Extensions to nondifferentiable, convex and non- 
convex potentials are described in this paper. Nonsmooth elastostatic structural 
analysis applications will serve as model problems here. The need for considering 
these extensions comes from problems with complete vertical branches (multival- 
ued relations) in their constitutive laws or in the boundary conditions. The concept 
of the quasidifferential permit us define a consistent quasilinearization of the non- 
linear relations. In this general framework variational inequality problems [10], [14] 
and hemivariational inequality problems [14], [17] are included. 

Let us give a concrete application by considering a discretized elastic structure 
in a displacement based finite element formulation where u is the n-dimensional 
vector of displacement degrees of freedom and e is the m-vector of element defor- 
mations. A fairly general discrete potential energy optimization problem in elas- 
tostatics reads: 

min {n(u)  = n(e(u))  + + p(u)} (10) 
u 6  Uad 

where H(e) is the elastic energy stored in the system due to deformation, ~ (u )  
is the potential that  counts for various boundary, interface or skin effects and 
p(u) is the potential that  generates the external loading vector. The geometric 
compatibility transformation is written in the form of a generally nonlinear but 
differentiable operator A(u)  : lit '~ --* R "~, 

e : A(u) (u) 
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Multibranch elasticity or holonomic plasticity models with ascending and descend- 
ing complete vertical branches that count for crashing, cracking and locking effects 
in a phenomenological way are covered by this model, by using nonsmooth and 
possibly nonconvex superpotential energy functions II(e) in (10). Analogously non- 
monotone relations, like stick-slip boundary or interface laws, frictional or soften- 
ing frictional laws etc., introduce nonsmooth and nonconvex potential functions 
(I)(u) in (10) (see [14], [17], [9] among others). The set of kinematically admissible 
displacements is in general a quasidifferentiable set, defined by: 

= { -  : < 0,  = o } (12)  

U IR '~ , IR '~ where , (  ) : --. ]P~'~ ~ (u )  : __+ pj,2 a n d n l + n 2  < naregeneralnonlin- 
ear and possibly nondifferentiable (but quasidifferentiable) equality and inequality 
constraints. Bilateral and unilateral contact effects and locking behaviour in a large 
displacement setting leads to relations of the (12) type. For simplicity only uncon- 
strained structural analysis problems, i.e. U~,a = ]R n are considered in this paper. 
Nevertheless note here that the generality of the developed theory is not seriously 
affected, since by the method of exact penalty functions (see e.g. [S], p.301, [9]) 
constraints (12) can be included in the goal function of the minimization prob- 
lem (10), and thus they lead to an unconstrained quasidifferendiable optimization 
problem. 

Variational formulations for the elastostatic analysis problem described by (10) 
will be produced in the sequel by writting down the optimality conditions for this 
quasidifferentiable minimization problem and using the quasidifferential calculus 
for the derivation of the quasidifferential of the composite function II(u). Variation- 
al equalities for classical smooth problems, variational inequalities for nonsmooth, 
subdifferentiable problems (cf. [10], [14], [17]) and systems of variational inequali- 
ties for general quasidifferentiable problems (cf. [24], [16], [17], [9]) are thus derived 
in a systematic way. 

3.1 SMOOTH CASE 

Let II(e) be a smooth function. Then optimality condition for problem (10) leads 
to the variational equality 

H'(u, Au) 0A(u) TOII(e) ~u  u) ] ]rAu+[0V(u)lr U0u j =0  (13) 

Since (13) hold true for every Au E p n the system of nonlinear equalibrium 
equations of the classical large displacement elasticity are produced. 

3.2 SUBDIFFERENTIABLE CASE 

Let the composite function II(u) in (10) be subdifferentiable. In this case the 
optimality condition for problem (10) leads to the variational inequality: Find 
u E ~'~ such that 

0 E 0H(u), or equivalently 0 < H(u*) - H(u), Vu* E p n (14) 



334 G.E. STAVROULAKIS, V.F. DEM'YANOV AND L.N. POLYAKOVA 

Note here that H(u*) is subdiferentiable either if ~t(u) is a linear transformation 
(e.g. in small displacement theory), II(e) is convex and possibly nondifferentiable 
(subdifferentiable) and ~ ( u ) ,  p(u)  are convex (subdifferentiable) functions, or in 
the general quasidifferentiable case if certain relations hold true (see [8]). 

3.3 QUASIDIFPERENTIABLE CASE 

Let II(e) of(10) be quasidifferentiable and let Oi l (e)  = [__0II(e),OII(e)] e ~ '~  x ]~'~o 
Then by using the rules of the quasidifferential calculus (see [S], p.127) for the com- 
posite function II(e(u))  we get a representation of the OH(u)  = [0 H(u) ,  0 II(u)] e 
R '~ x R '~ with 

m 

0 H(u)  --- {q C ~'~ [ q = E ( W ( i ) )  - l z ( i )  - l u ( o ) [ O J t ( u ) ] }  
- 2 0 u  

i = l  

(15) 

with v : ( v ( " ) , . . . ,  ~ (~ ) )  e Oil(e), 

m 

o n ( u )  = {l e ~ "  I1 = ~ ( - ( ' ) )  - 1 .  (o l=(i)"rO'A(u)'" 
2-- -- 2 "  ) L ~ - - - u  J J" 

i=1 
(16) 

with v = (v(1) , . . . ,  u(m)) C Oil(e), and E,P C Rm such that 

z < ~ < ~, w e _0n(u) u (-0nn(u)) (17) 

Moreover, on the assumption that ~ (u)  and V(U) are differentiable we get 

DH(u)  = [_0 H(u) ,  0 II(u)] = [_0H(u) + Vff(u)  + Vp(u) ,0II (u)]  (18) 

The optimality conditions for the quasidifferentiable unconstrained optimization 
problem, i.e. find u E ~'~ such that 

0 n(u) c 0 n(u) (19) 

lead to the equivalent problem of solving the system of variational inequalities: 
find u E ]R n such that 

w C _0 H(u) ,  W, e 0 n (u )  (20) 

3.4 DIFFERENCE CONVEX (D.C.) CASE 

Let a small displacement problem be considered, i.e. linear compatibility rela- 
tions hold with (11) replaced by A(u)  = GTu,  with G T an (m • n) matrix and 
accordingly p(u) = pTu, with p the n-dimensional loading vector. Let moreover 
II(e) in (10) be convex and differentiable, e.g. consider for instance the linear elas- 
ticity problem (Hookean law) with II(e) = �89 where Ko is the (m • rn) 
natural stiffness matrix of the structure. Let the only cause of nonconvexity and 
nondifferentiability in the problem be introduced by a difference convex boundary 
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potential energy function, i.e. ~(u)  is written as a difference of convex, possibly 
nondifferentiable terms [24], [25] 

�9 (u) = r  - (21) 

In this case by using the quasidifferential calculus on the d.c. potential energy 
function one has: 

0 H(u) = K u  + p + 0il~l(U), 0 II(u) = - 0 ~ 2 ( u )  (22) 

Optimality conditions for the d.c. potential lead to the following system of varia- 
tional inequalities that  describe the nonsmooth and nonconvex structural analysis 
problem: Find u E ]E '~ such that  

0 E K u  + p + O(~l(U) - -  W (23) 

for each w E ]PJ~ with 
w e 0~2(u) (24) 

REMAI~K 3.1. l~elations (23) ,  (24), which are convex differential inchsions, or 
multivalued relations, are equivalent to the discrete variational inequalities: 

u T K ( u  * - u) + (p - w)T(u * -- u) + ~l(u*) - ~ l (u )  _> 0, Vu* e R'~ (25) 

and 
- > u S ( .  * - u), Vu* (26) 

I~EMAttK 3.2. The system of variational inequalities (20) is explicitly defined due 
to the global d.c. representation of the potential energy function. Unfortunately 
this is not possible in the general quasidifferential case, where the system of vari- 
ational inequalities (20) are implicitly defined, i.e. they are defined at each point 
of an iterative scheme. 

4 N o n d i f f e r e n t i a b l e  n u m e r i c a l  o p t i m i z a t i o n  m e t h o d s  

Quasidifferential and codifferential optimization algorithms are based on gradient- 
like, descent, iterative techniques whereas gradient information is replaced by 
the set-valued quasidifferential or the codifferential and the steepest descent find- 
ing subproblems are appropriately replaced by quadratic programming subprob- 
lems with a polyhedral approximation of the aforementioned set-valued quantities. 
Since supergradients (resp. hyperdifferentials) pose a combinatorial problem in the 
descent direction finding subproblem, which can be effectively treated after mak- 
ing the polyhedral approximation by repeated solution of a number of similar 
subproblems or simply by solving one of them (supergradient-like technique) the 
basic methods used are the ones of hypodifferential optimization. These techniques 
will be described in the sequel (for more details we refer to [4], [20], [7], [8], [9]) and 
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for applications in mechanics to [15], [26], [24], [17], [9]). It should be mentioned 
here that  first order quasidifferential and codifferential optimization schemes treat 
more effectively, in a correct way vertical branches of laws and boundary condi- 
tions in mechanical problems, or equivalently, the nonsmoothness of the respective 
potentials. If at a neighborhood of the solution the problem is essentially smooth, 
i.e. the solution lies far away from a point of nondifferentiability, classical methods 
of nonlinear computational mechanics (e.g. Newton methods and it's derivatives 
[1]) can be used for the refinement of the accuracy and for speeding up the rate of 
convergence. Nevertheless if multiple points of nondifferentiability (crisps) have to 
be passed along a given loading path (probably the incremental loading in a more 
general incremental scheme) the here proposed schemes have more advantaghes 
compared with the classical approaches (e.g. quasi-Newton techiques). 

4.1 THS METHOD OF HYPODIFFERENTIAL DESCENT. 

Let f be a locally Lipschitz function defined on an open set X from the Euclidean 
space lit n and be hypodifferentiable there. Since the class of hypodifferentiable 
functions coincides with the class of subdifferentiable functions, then in this case 
for every point x E X the following relation holds: 

0 f ( x )  = {v e A n I [0, v] e df(x) C ~1 x ~.'~} (27) 

where Of(z) is the subdifferential of f at x and dr(x) is the hypodifferential of f 
at x. 

Both the subdifferential Of(x) and the hypodifferential dr(x) are convex sets, 
but they belong to different Euclidean spaces. 

It is well known that  for a point x to be a local minimum point of a subdiffer- 
entiable function f ,  it is necessary that  

0,, e Of(z) (28) 

Making use of (27) it is easy to check that  for any local minimum point it is 
necessary that  the following inclusion be true: 

�9 d/(x) (29) 

A point x for which the condition (27) is satisfied will be called a stationary point 
of the function f on the set X.  

Let a point x be a nonstat ionary point for f on X,  that  is (29) does not hold 
true. Then we can project  0n+l on the set dr(x),  i.e. we can find the solution of 
the subproblem: 

z e 
(30) 
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Here and in the sequel we consider the Euclidean metric I1.11. Note that ,  if 
0.+1 ~ df(~),  then ~ ( ~ )  is not equal to 0..  

The direction g(x)  = - w ( x )  is called a direction of hypodifferential descent of 
the function f at the point x on X.  This direction is unique. Moreover if f ' ( x ,  g) 
is the directional derivative of f at x in the direction g, it is not difficult to prove 
tha t  if x is not a s ta t ionary point of f at x, then 

f'(x,g(x)) <_ - IIz (z ) l l  2 (31) 

Let f be continuously differentiable, tha t  is, the hypodifferential mapping df : 
~,,+1 __+ 2 R'~ is Hausdorff  continuous, then the direction of hypodifferential descent 
is continuous in x. This proper ty  makes it possible to construct methods for mini- 
mizing continuously hypodifferentiable functions like the gradient methods in the 
smooth case. Note tha t  this development can not be based on the classical convex 
analysis subdifferential notion, since the subdifferential mapping is not Hausdorff  
continuous, even if the function is continuously hypodifferential. Most of the iter- 
ative numerical methods generate minimizing sequences by the rule: 

x~+l = x/r + c~kd/r (32) 

where dk is a descent direction (if dk is not equal to 0,~), and o~k is a positive step 
size~ All gradient descent methods use (32). 

Let us show tha t  a direction of hypodifferential descent can be used for min- 
imizing continuously hypodifferentiable functions analogously to the direction of 
the antigradient in the smooth case. The step-size can be choosen in several ways. 
Let us consider some alternatives as in the smooth case: 

- one-dimensional minimization: the step-size is choosen to satisfy the following 
condition 

ak = a r g m i n  f ( x k  - awk)  (33) 
a > O  

- one-dimensional minimization in the presence of constraints: in this case the 
step-size is choosen from the following condition 

ak = argmin  f (xk  - awk), q > 0 (34) 
e (0, q] 

- the Armijo step-size rule: let us fix a paramete r  8 E (0,0.5]. Find the first 
value ik = O, 1 , . . .  under which the following inequality holds true 

f (xk  - (0.5)ihwk) < f (xk)  -- (0.5POHw~II (35) 

and set czk = (0.5) ~k 
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Suppose that  X = IR. n. Since the function f is directionally differentiable at x, 
then 

f (~  + ag)  - f (~)  = f ' ( ~ , g )  + o (a ,g )  (36) 

where o(a,g) ~ 0, as a ~ +0 ot 
Assume that  the convergence in (31) is uniform with respect to g E ~ ' ~  IIgll = 1. 

The method of hypodifferential descent for minimizing f on ~'~ has the following 
steps: 

- Choose Xo E R ~ 

- If 0,~+1 6 df(xo), then x0 is a stationary point for f and the process is finished. 

- Otherwise, for k _> 0 set 

Xk+l : ~k + ~ k g ( Z k )  : ~k  + ~ k g k  (37) 

where gk is the direction of hypodifferential descent, and the step-size is 
choosen either by the Armijo rule or as the result of one-dimensional min- 
imization. 

If the sequence {xk} is finite then by construction the latter point is the stationary 
point of f .  Consider the case where this sequence is infinite. By virtue of inequality 
(31) the sequence {f(xk)} is decreasing. Let the Lebesgue set 

be bounded. 

C ( x o ) : { x  e ~ n  l f ( x ) ~  f(xo)} (38) 

THEOREM 1. Every accumulation point of the sequence {xk} is a stationary 
point of the function f . 

Let us clarify the above given theory by some examples of continuously hypodif- 
ferentiable functions. 

EXAMPLE 4.1. Any continuously differentiable function is a continuously hypod- 
ifferentiable function because we can take the point [0, f ' (x)]  C ~ 1 •  ~ n  as a 
continuous hypodifferential of f at z, where f ' ( x )  is the gradient of f at x. In this 
case the direction of hypodifferential descent coincides with the antigradient of f .  

EXAMPLE 4.2. Let f be a maximum function, i.e. 

: (39) 
y E Y  
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where Y C R'~ is a compact set and the function r and its derivative are both 
continous on X x Y, where X C ~.'~ is an open set. Then function f is directionally 
differentiable at x E X and 

f (x, g) = max , g 
y �9  0x 

where R(x)  = {y e Y I f ( x )  = r  From (40) follows that  f ' ( x , g ) i s  a convex 
function in g. The set 

df(2) = CO {[t ,~] E ~  1X~l. n I t =  r  f (x) ,  ~ =  r  y E Y} (41) 

can be considered as a continuous hypodifferential of f at x. Therefore f is contin- 
uous hypodifferentiable. In particular, if we consider the maximum function then 
Y contains a finite collection of points, i.e. 

Y = {y;} ,  ~ �9 • = { 1 , . . . , m }  (42) 

then the set dr(x) is polyhedral 

df(,) = co { ~ ; ( , )  I i e I }, (43) 

where 

EXAMPLE 4.3. Let f be the sum of maximum functions 

(44) 

f ( x )  = y ~ f j ( x ) ,  J = { 1 , . . . , p }  (45) 
jEJ 

f j =  max t j ( x , y )  (46) 
y E Y  

where Y C ~ "  is a compact set and all functions t j ,  j E J, and their derivatives 
are continuous on X • Y. Since all t j ( x ,  y) are continuously hypodifferentiable, by 
using appropriate calculus rules [6] we get 

dr(x) = ~_, dfi(x ) (47) 
dE] 
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4 . 2  F INDING THE DIRECTION OF HYPODIFFERENTIAL DESCENT. 

For practical application of the method of hypodifferential descent it is necessary to 
solve effectively the problems of finding the direction of descent and the step-size. 
The problem of definding the step-size is a one-dimensional minimization problem 
and a lot of effective methods are available to solve it. The problem of finding the 
direction of hypodifferential descent can be successfully solved if a hypodifferential 
is a polyhedron, which is discretized by its vertices or a sum of such polyhedrons, 
because in these cases we have to solve a quadratic programming subproblem under 
simple constraints. This subproblem reads: 

m i n  
�9 df(~)  

< z , z  > =  ~inl lz l l  ~ = I Iz(~)[ I  ~ 

z(=) = [ t (~) ,~(x)]  �9 ~ x ~ "  (48) 

EXAMPLE 4.4. Let us consider the function f ( x )  = maxier f i (x ) ,  I = { 1 , . . . ,  m}, 
where fi  are continuously differentiable on l~. '~, then : : ( x )  = co{ai(x)  [ i e I ) ,  
where a i (x)  = [fi - f ( x ) ,  f i(x)]  e ~1 x~ ,~ ,  i e I ,  f i (x )  is the gradient o f f i  at 
z. Since any point of the convex hull can be presented by a convex combination of 
points ai(a),  i E I ,  we get 

z = E ~ ( ~ )  = E ~,c~(x) + p(x) (49) 
iEI iEI 

where ~-]m 1 ~i = 1, ~i ~ 0, i e I ,  with ci(x) = [fi(x),f~(x)] and p(x) = 
I - f  (x), 0hi. Thus the problem (48) is equivalent to the following problem: 

I (50) 

where ~ = [A1,. . . ,  Am] e ~r~ and G(x) is a Gram matr ix of vectors ci(x), i.e. 

{ < cl(~),cl(x)> < cl(~),cm(~)> } (51) 
a ( ~ )  = < cm(~), c~(~) > < cm(x), c~(~)  > 

with q(x) = [ql (x) , . . . ,  q,~(x)] e ~ '~  and qi(z) = - f i ( x ) f ( x ) ,  i �9 f .  By solving 
problem (50) we find multipliers )~i, i �9 I ,  such that  

~(~) = 
i----1 

m 

t(x) = ~_, A,(f~(x) - f(x)) = ~, X,f~(x) - f(x) 
i=1 i=1 
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Note  tha t  instead of problem (50) se can solve the following problem: 

m 

~ < GI(~)~,  ~ >, ~ = 1, ~ > 0 (52) 
i----1 

where ~ = [~1 , . . - ,  ~m] �9 ~ m  and GI (~)  is a Gram mat r ix  of vectors ai (x ) ,  i �9 I. 

E X A M P L E  4.5. Let 

f(x) = ~ If~(=)l, i �9 f = { 1 , . . . ,  ~) 
iEI 

(53) 

and f i ,  i E I are cont inuously differentiable on ~'~. Then  

df(~) = ~ dr  (54) 
iEI 

where r  = m a x { f i ( x ) , - f i ( x ) } , i  �9 I and dr  = co{a i ( x ) , g i ( x ) } ,  a i (x )  = 
[fi(x) - r  f~(x)] e ~ 1  X ~ n  fli(Z ) ~-~ [ - f i ( x )  - r  f ' ( x ) ]  �9 R 1 x R n. In this 
case problem (50) is equivalent to 

.~ i~  < z , z  > =  ~i~l lzl l  2 = Iiz(~)ll 2 
z e df(~) 

Z = Zl + . . .  T z, n, z c d f (x)  C ~ l  • PJ ' , z i  E dr c ~ l  • ]R'~,i E Io (55) 

Since each set de/ is an interval  on lP~l• ]R~ n, the set dr(x) is a sum of inter- 
vals. Therefore  z~ = 2~i[f / (x) ,  f~(x)] + [ - f / ( x )  - f ( x ) , - f ' ( x ) ] ,  hi e [0, 1],i  e I ,  

and z = Ei~l 2Ai[fi(x),  f~(x)] + [ - f i ( x )  - f ( x ) ,  - f ~ ( z ) ]  : E~'_~ 2Ai[fi(x),  f~(x)] - 
[fi(x) ,  ]~(x)] + [ - f ( x ) ,  0], 0 ~ hi ~ 1, i E I .  In the no ta t ion  used previously we 
have z = ~ iez (2Ai  - 1)ci(x) + p(x) .  By denot ing by Izi : 2)~i - 1 we get the 
problem: 

1 
. ~ i ~  < a ( ~ ) . , .  > + < q ( ~ ) , .  >, .~ e [ -1 ,  1], ~ e { 1 , . . . ,  m)  (56) 

where # = [#1, �9 �9 -, #m] e ~P~'~, G(x)  is the Gram ma t r ix  of vectors ci(x),  i �9 I ,  and 
q(x) = [ q l ( x ) , . . . ,  qm(x)] �9 ~ m  qi(x) -- - f i ( x ) f ( x ) .  By solving problem (56) we 
find multipliers #i,  i �9 I,/z~ �9 [ - 1 ,  1], such tha t  

w(~)  = ~)-~ # , f~(x) ,  t (x)  : ~ - ~ # i f i ( x ) -  f ( x ) .  (57) 
iEI iEI 

Note  t ha t  prolems (50) and (56) differ only in the constraints ,  while the object ive 
funct ion remains the same. As the Gram mat r ix  is a nonnegat ive  matr ix ,  there  
always exist solutions to these problems.  These  solutions may  not  be unique when 
the G r a m  ma t r ix  is non positive. 
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5 Quasi- and co-differentiable computa t iona l  mechanics and  
examples  

Within the general potential energy minimization scheme of section three, concrete 
examples of computational mechanics applications of quasidifferentiable and cod- 
ifferentiable optimization will be given here. A remark of general validity on the 
connection with traditional computational mechanics techniques should be given 
first. Nonlinearity is usually treated by step-wise linearization techniques (e.g. by 
the generalized Newton method or the method of linear iterations as described 
among others in [1], Chap.3). Nonsmoothness requires the introduction of special 
nonsmooth approximation schemes (e.g. quasi-Newton techniques) while no gen- 
eral effective scheme for treating nonconvexity has been proposed undil now. Both 
issues require nonsmooth mechanics methods for their effective treatment [14], [17]. 
The concepts of the quasidifferential and the codifferential address both problems 
in a systematic and elegant way since the set valued substitutes of the derivative 
treat nondifferentiability while convex and concave parts are treated separately by 
the sub- and the super-differential (resp. the hypo- and the hyper-differential). 

Characteristic applications of the general scheme discussed in section three and 
an example solved by the algorithms of section four are given here. A frictional skin 
effect, where a monotone Coulomb friction law is considered to hold at eadh d.o.f. 
of the adhesive joint of Fig.1 is considered first. On the assumption that boundary 
supports are treated explicitly (i.e. inequality constraints in (14) are considered in 
the effective stiffness matrix K) and in the framework of small displacement and 
deformation theory the potential energy minimization problem (12) reads: 

l u T K u  + c c f i  lull -- pTu (58) : 

i----1 

In (58) cc stands for the f r i c t i o n a l  force  l imi t  and, for notational simplicity, uni- 
directional frictional joints along each d.o.f, direction are considered separately. 
Obviously the convex, nondifferentiable potential II(u) in (58) is subdifferentiable 
(thus also hypodifferentiable) and the static analysis problem~ which requires the 
numerical solution of (58) can be tackled by the hypodifferential descent algorithms 
given in section four (see also [4], [8], [9]). The results, in the form of displacement 
contours for various cc's are given in Figs.2,3 (for load p -- 10. and cc = 0.1~ 
cc -- 0.5 resp.). 

Nonmonotone skin effects can be tackled by replacing the second term in the 
potential energy function of (58) by the nonconvex term 

N 1 
c c  - 2 , ! + 

i=1 

( 5 9 )  

A problem like the one in (22) arises, for which either a conjugate super and sub- 
gradient method can be used, or a difference convex decomposition that leads to 
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Fig. 2. Monotone frictional law of (58) with c c  = 0.1. 

problems (26), (27) or (28), (29) must be solved (see also [16], [24], [25], [26], [9]). 
Sample results for a problem of this kind are given in Figs. 4,5 (with c c  = 10., u0 = 
0.01, k i  = 1500. and load p = 0.1, p = 1.0 resp.). 
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